Nevertheless, there is no such evident way to represent letters and other non-numeric characters with 0s and 1s. Therefore, in order to do that, computers use ASCII tables, which are tables or lists that contain all the letters in the roman alphabet plus some additional characters. In these tables each character is always represented by the same order number. For example, the ASCII code for the capital letter "A" is always represented by the order number 65, which is easily representable using 0s and 1s in binary: 65 expressed as a binary number is 1000001.
The standard ASCII table defines 128 character codes (from 0 to 127), of which, the first 32 are control codes (non-printable), and the remaining 96 character codes are representable characters:
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | NUL | SOH | STX | ETX | EOT | ENQ | ACK | BEL | BS | TAB | LF | VT | FF | CR | SO | SI |
1 | DLE | DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN | EM | SUB | ESC | FS | GS | RS | US |
2 | ! | " | # | $ | % | & | ' | ( | ) | * | + | , | - | . | / | |
3 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | : | ; | < | = | > | ? |
4 | @ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |
5 | P | Q | R | S | T | U | V | W | X | Y | Z | [ | \ | ] | ^ | _ |
6 | ` | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o |
7 | p | q | r | s | t | u | v | w | x | y | z | { | | | } | ~ |
* This panel is organized to be easily read in hexadecimal: row numbers represent the first digit and the column numbers represent the second one. For example, the "A" character is located at the 4th row and the 1st column, for that it would be represented in hexadecimal as 0x41 (65).
No comments:
Post a Comment